|
|
|
|
Products
Cartridge collectors
Cartridge collectors are another commonly used type of dust collector. Unlike baghouse collectors, in which the filtering media is woven or felt bags, this type of collector employs perforated metal cartridges that contain a pleated, non woven filtering media. Due to its pleated design, the total filtering surface area is greater than in a conventional bag of the same diameter, resulting in reduced air to media ratio, pressure drop, and overall collector size.
Cartridge collectors are available in single use or continuous duty designs. In single-use collectors, the dirty cartridges are changed while the collector is off. In the continuous duty design, the cartridges are cleaned by the conventional pulse-jet cleaning system.Almost always includes a steel enclosure containing porous filter media that separate fine dust particles from a flowing stream of dirty air. The most common filter media used in collectors are filter bags and cartridges. Dust particles build up on the outside of the media and form a coating called "dust cake." It is this layer that does the actual job of filtering fine particles. As the cake builds up, the pressure drop across the filter bag rises.
Selecting a dust collector
Dust collectors vary widely in design, operation, effectiveness, space requirements, construction, and capital, operating, and maintenance costs. Each type has advantages and disadvantages. However, the selection of a dust collector should be based on the following general factors:
* Dust concentration and particle size - For minerals processing operations, the dust concentration can range from 0.1 to 5.0 grains (0.32 g) of dust per cubic feet of air (0.23 to 11.44 grams per standard cubic meter), and the particle size can vary from 0.5 to 100 µm.
* Degree of dust collection required - The degree of dust collection required depends on its potential as a health hazard or public nuisance, the plant location, the allowable emission rate, the nature of the dust, its salvage value, and so forth. The selection of a collector should be based on the efficiency required and should consider the need for high-efficiency, high-cost equipment, such as electrostatic precipitators; high-efficiency, moderate-cost equipment, such as baghouses or wet scrubbers; or lower cost, primary units, such as dry centrifugal collectors.
* Characteristics of airstream - The characteristics of the airstream can have a significant impact on collector selection. For example, cotton fabric filters cannot be used where air temperatures exceed 180° F (82°C). Also, condensation of steam or water vapor can blind bags. Various chemicals can attach fabric or metal and cause corrosion in wet scrubbers.
* Characteristics of dust - Moderate to heavy concentrations of many dusts (such as dust from silica sand or metal ores) can be abrasive to dry centrifugal collectors. Hygroscopic material can blind bag collectors. Sticky material can adhere to collector elements and plug passages. Some particle sizes and shapes may rule out certain types of fabric collectors. The combustible nature of many fine materials rules out the use of electrostatic precipitators.
* Methods of disposal - Methods of dust removal and disposal vary with the material, plant process, volume, and type of collector used. Collectors can unload continuously or in batches. Dry materials can create secondary dust problems during unloading and disposal that do not occur with wet collectors. Disposal of wet slurry or sludge can be an additional material-handling problem; sewer or water pollution problems can result if wastewater is not treated properly.
|